comment installer-pydio-on-debian-12

Pydio Cells is a self-hosted Document Sharing and Collaboration platform. It also gives you full control of your
document-sharing environment. The Pydio Cells is a fast performance, can handle huge file transfer sizes, and provides
advanced workflow automation.

In the following guide, I will walk you through the installation of Pydio Cells as a file-sharing and collaboration tool on a
Debian 12 server. You will install Pydio Cells with the MariaDB database server and Apache?2 reverse proxy. You'll also
secure the installation with SSL/TLS certificates that you will generate via Certbot and Letsencrypt.

Prerequisites

Before moving on, gathers the following:

e A Debian 12 server.
e A non-root user with administrator privileges.
e A domain name pointed to the server IP address.

Installing Dependencies

The Pydio Cells is an open-source file sharing, management, and collaboration. Before installing it, you must install
dependencies such as MariaDB for the database server and Apache2 for the reverse proxy. You will also install Certbot
for generating SSL/TLS certificates to secure your installation.

First, refresh your Debian package index using the following apt update command.

sudo apt update

Now install dependencies via the apt install command below. You will install the MariaDB server that will be used as
the database for Pydio Cells, the Apache2 web server asa reverse proxy, and Certbot for generating SSL/TLS
certificates from Letsencrypt.

pt install ma
. Don

is already lim
» following addit

Llibhttp-m

libsigsegv: na 5 lib adke L 1i 1te-pe buri Liburi mariadb-client mariad
ip2 Lz4 me y=plug vid ra mariadb=-plugin-prov

r=cor: ql-com W S0C

bsql nent-perl libdat libipc-sh

i per C pm-perl Libe perl nfig ctll libdbd-mari
rl libfc libfcgi-perl Llit 3dbl libhtml ‘sgt-perl. Llibhtm
D 11 media -1 lib Libmariadb3 Libmpfr ibncursesé lib
1 libtim 1 liburi-perl Lliburi mariac Tient mariad
mariadb-plugin-nrovi 42 mards: y N h-plugin-nrovider a mariadb-plugin-prov
mariadb-pl .nap ariadb ariadb-s 1 pv S
@ upgraded, =
Need to
Aft

Once dependencies are installed, verify the apache?2 service using the following systemct!/ command. Ensure that the
apache?2 service is enabled and running.

i sudo systemctl is-enabled apache2
| sudo systemctl status apache2

The following output indicates that apache?2 is enabled and running.

bDocs: ntips://httpd.apache.org/docs/2.4/

Main PID: 5538 (apache2)
Tasks: 55 (1imit: 4642)
Memory: JAdd.9M
CPU T 46ms
CGroup: /system.slice/apachel.se
in/apache:

Lastly, verify the mariadb service via the following systemctl command.

sudo systemctl is-enabled mariadb
sudo systemctl status mariadb

The output should be similar, which indicates the mariadb service is running and enabled.

root@debianl2:~#
‘t@debianl2:~# -udo systemctl is-enabled mariadb
lad
ro 12:~# sudo systemctl stal
®* mai E MariaDB 18.11 tabase s r
Loaded: ad (/lib/system: : set: enabled)
Active: : e (runnin

Main PID: 7
tass ng your SQL requests now..."
Limit: 4642
Memory: 1 M
CPU:

slice/m wdb. se

19 fusr/shi riadbd

Configuring MariaDB Server

In the following step, you will be securing your MariaDB server installation via the mariadb-secure-installation utility.
Then, you will create a new database and user for Pydio Cells.

Execute the mariadb-secure-installation command below to start configuring the MariaDB server.

sudo mariadb-secure-installation

The setup process will require you to input Y to confirm the new settings or n for no. Below are some, of the MariaDB
server configurations you will be asked for:

e Switch local authentication to unix socket? Input n.

e Set up the new MariaDB root password? Input y to confirm, then type the new password fer your MariaDB server
deployment.

Remove anonymous user? Input'y to confirm.

Remove the default database test from the deployment?. Input y to confirm.

Disallow MariaDB roeot login from remote connections? Input y to confirm.

Reload table privileges and apply the changes? Input y and press ENTER.

e o o o

After the MariaDB is secured, you will create a new database and user for the'Pydio Cells installation. To do that, you
must log in to the MariaDB server.

Execute the following mariadb command to log in to the MariaDB server. Input your MariaDB root password when
prompted.

| sudo mariadb -u root -p

Once logged in, run the following queries to create a new database cells, a user pydio with the password p4sswOrd.

Then, allow user pydio to access the database cells.

CREATE DATABASE cells;

. CREATE USER 'pydio'@'localhost’' IDENTIFIED BY 'p4sswOrd’;
| GRANT ALL PRIVILEGES ON cells.* to 'pydio'@'localhost’;

i FLUSH PRIVILEGES;

MariaDB [(none)]> CREATE USER 'pydio'@'localhost' IDENTIFIED BY 'p4sswOrd’;
Query OK, ® rows affected (©.081 sec)

MariaDE [(none) CREATE DATABASE cells;
Query OK, 1 row affected (0.881 sec)

MariaDB [(none) GRANT ALL PRIVILE S ON cells.* to '"pydio'@'localhost';
Query 0K, B rows affected (8.082

MariaDB [(none)]> FLUSH PRIVILEGES;
Query 0K, 8@ rows affected (8.001 sec)

Next, run the following query to ensure the user pydio can access the database cells.

| Gra:

| GRANT USAGE ON *.
| GRANT ALL PRIVILE

iariaDB [(none)]> q
Bye
debian

Type quit to exit from the MariaDB server.

Installing Pydio Cells

After configuring the MariaDB server, you will install the Pydio Cells via static binary file. And before that, you must
prepare your system by creating a new dedicated user, setting up a data directory, and creating some system
environment variables that are needed by Pydio Cells.

Setting Up User and Environment Variables

First, create a new user pydio using the following command.

Now create a new data directory /var/cells for your Pydio Cells installation and change the ownership to the user pydio.

sudo mkdir -p /opt/pydio/bin /var/cells
sudo chown -R pydio: /opt/pydio /var/cells

Next, run the following command to create new environment variables eonfiguration /etc/profile.d/cells-env.sh and
change the permission to 0755 to make it executable. The environment variable CELLS_WORKING_DIR for the data
directory, CELLS_BIND to determine which IP address and port Pydio Cells will be running, and the
CELLS_EXTERNAL is the domain name of your Pydio Cells installation.

sudo tee -a setc/profile.d/cells-env.sh << EOF
export CELLS WORKING DIR=/var/cells

export CELLS BIND=https://127.0.0.1:8080

export CELLS EXTERNAL=https://cells.hwdomain.io
EOF

'\ sudo chmod 0755 /etc/profile.d/cells-env.sh

export CELLS WORKING DI var/fcells
export CELLS_BIND=https://localhost:8088

]
cport CELLS WORKING DIR=/var
ZLLLS _BIND=https://lo :
- s.hwdomain.qio

rnnt@deh1anl¢ 0755 /etefprofile.dfcells-env.sh
root@debianl2; ~#

Now log in as the user pydio and verify environment variables CELLS WORKING DIR, CELLS BIND, and
CELLS EXTERNAL.

echo $CELLS WORKING DIR
echo $CELLS BIND
echo $CELLS EXTERNAL

If successful, you should see each environment variable will be matched with the file /etc/profile.d/cells-env.sh.

root@debianl2:~#

(ING_DIR
!var;"ce'l.'l_s
yydio@debionl2:~% echo $CELLS_BIND
*1ttps H'Lm lhost: 8688
%
1,d1n|‘.dnb1 i~5 echo SCELLS_EXTE
1ttps Hce! hwdom:

-
-
-
-

Downloading and Installing Pydio Cells

Execute the following command to download the binary static file of Pydio Cells to /opt/pydio/bin/cells.

export distribId=cells
wget -0 /opt/pydlo/bln/cells https://download.pydio. com/latest/${d15tr1bId}/reZease/{latest}/llnux amd64/${distribId}

Once the Pydio Cells are downloaded, make it executable using the following command. Then, type exit to log out from
user pydio.

chmod a+x /opt/pydio/bin/cells
exit

Now run the following command to allow cells to bind in the privileged.ports..Then, create a symlink for the
/opt/pydio/bin/cells command to /usr/local/bin/cells.

sudo setcap 'cap net bind_Service=+ep"‘ /opt/pydio/bin/cells
sudo ln -s Jopt/pydio/bin/cellswfusr/local/bin/cells

Now log in again as a pydio user and check the binary file of cells. Then, verify your current cells version.
su - pydio

which cells
cells version

You should see the cells binary file is located at /usr/local/bin/cells and the cells version that was installed is 4.2.5.

=

Buil 17 Jul 23 99:04 +0000
Git commit: 0b98e8a5e7976e77964fab784b123ac55971aab4
2 linux/amd&4
gol,19,11

Configuring Pydio Cells

With the Pydio Cells binary file installed, you will start configuring it, which can be done via CLI (command-line
interface) or web browser. As for this case, you will configure Pydio Cells from the command-line terminal, you will set
up the database, create the admin user, then will create a new systemd service file to run Pydia Cells in the
background.

Run the celis command below to start configuring the Pydio Cells installation. The parameter --c/i allow you to configure
Pydio Cells from your terminal with an interactive environment.

Below some configurations that you will be asked for:

e For the database configuration, select via TCP. and input the database host as localhost, port with default 3306,
database name cells, the user pydio, and the password.

¢ Input n when prompted about the MongoDB configuration for high-availability Cells installation.

e Input the new admin user and password for your Pydio Cells installation.

e For the storage configuration, select the option /var/cells/data.

When the configuration process is finished, you should get an output Installation Finished like the following:

configure --cl

Welcome to Pydio Cells Home Editien installation

(va.2.5) will nfigure: an this mac

ags and credent to a MySQL or MariaDB -yuivalent) server.
Pick your installat wde when you ar wdy .

3386
cells
pydio

Successfully ected to
r Do you wish 1 nfigure a MongoOE ronnect better ty and required for clustering deployment):

Administrative User Configurat
admin

Ekkkkk ok Rkk

Confirm Password: #=xs «z*n*l

Default storage location

Applying configuratic

Adding admi Awe config, to be inserted at next start
Configuration

#it Software is ready to run!

Installation Finished

Now that you've configured Pydio Cells, the next step you will set up cells to run in the background as a systemd

service. This makes you easier to manage cells via the systemctl command utility.

Use the following nano editor command to create a new systemd service file /etc/systemd/system/cells.service.

sudo nano /etc/systemd/system/cells.service
Insert the following configuration and be sure to change some environment variables CELLS WORKING DIR,
CELLS BIND, and CELLS EXTERNAL within the below configuration.

[Unit]

Description=Pydio Cells
Documentation=https://pydio.com
Wants=network-online.target
After=network-online.target
AssertFileIsExecutable=/opt/pydio/bin/cells

[Service]

User=pydio

Group=pydio
PermissionsStartOnly=true
AmbientCapabilities=CAP NET BIND SERVICE
ExecStart=/opt/pydio/bin/cells start
Restart=on-failure
StandardOutput=journal
StandardError=inherit
LimitNOFILE=65536

TimeoutStopSec=5

KillSignal=INT

SendSIGKILL=yes

SuccessExitStatus=0
WorkingDirectory=/home/pydio

Add environment variables
Environment=CELLS WORKING DIR=/var/cells
Environment=CELLS_BIND=https://127.0.0.1:8080
Environment=CELLS EXTERNAL=https://cells.hwdomain.io

[Install]
WantedBy=multi-user.target

When finished, save the file and exit the editor.

Now run the following systemetl command to reload theisystemd manager and apply the new systemd service.

sudo systemctl daemon-reload

Start and enable the cells service using the systemct/ command below. This command will add the cells service to start
automatically at system boot.

sudo systemctl start cells
sudo systemctl enable cells

I - o - - e - . A . . . - - - - I o o o n e e oo - -

root@debi:
sudo

sudo

sudo sy ictl start ce
idebianl2: sudo - nctl enable c

Created symlink /fetc =md/sys mult target.wants/cells.servi
root@debianl2:~

Verify the cells service status'using the command below. The Pydio Cells should be running on 127.0.0.1 with port
8080, as defined within the CELLS_ BIND environment variable.

sudo systemctl status cells

If running, you should get an output such as active (running).

Configuring Apache?2 as a Reverse Proxy

At this point, the Pydio Cells are up and running in the background on localhost with default port xxx. And this step, you
will be configuring Apache2 as a reverse proxy for your Pydio Cells application. Also, you will generate new SSL/TLS
certificates for your domain name, so be sure that you've prepared the domain name and pointed to the server IP
address.

First, execute the aZenmod command below to enable some Apache2 extensions that will be used as a reverse proxy.

sudo aZenmod rewrite proxy proxy http proxy wstunnel http2 proxy http2

Then run the following command to create a new directory /ar/www/htmli/cells/public_htm! and change the ownership
to www-data user. This directory will be used for the verification when generating Letsencrypt certificates.

sudo mkdir -p /var/www/html/cells/public html
sudo chown -R www-data:www-data fvar/www/html/cells/public_html

After that, run the certbot command below to generate new SSL/TLS certificates for your Pydio Cells domain name. Be
sure to change the email address and the domain name with your information.
E sudo certbot certonly --agree-tos --email user@email.com --no-eff-email --webroot -w /var/www/html/cells/public html -

d cells. hwdomain.io

When the process is complete, your SSL/TLS certificates will be available at the /etc/letsencrypt/live/domain.com
directory.

Next, create a new Apache?2 virtual host configuration /etc/apacheZ/sites-available/cells.confusing the following nano
editor command.

sudo nano /etc/apachez/sites-available/cells.conf

Insert the following configuration and be sure to change the domain name and the path of SSL/TLS certificates with
your information.

<VirtualHost *:80>
ServerName cells.hwdomain.io

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (.*) https://%{HTTP HOST}%{REQUEST URT}

RewriteCond %{SERVER NAME} =cells.hwdomain.io
RewriteRule ~ https://%{SERVER NAME}%{REQUEST URI} [END,NE,R=permanent]
</VirtualHost>

<VirtualHost *:443>
ServerName cells.hwdomain.io
AllowEncodedSlashes On
RewriteEngine On

be aware of this

Allow reverse proxy via self-signed certificates
SSLProxyEngine On

SSLProxyVerify none

SSLProxyCheckPeerCN off

SSLProxyCheckPeerName off

SSLProxyCheckPeerExpire off

The order of the directives matters.
If Cells is not running with https, consider using ws instead of wss
ProxyPassMatch "/ws/(.*)" wss://localhost:8080/ws/$1 nocanon

This rewrite condition is required if using Cells-Sync
RewriteCond %{HTTP:Content-Type} =application/grpc [NC]
RewriteRule /(.*) h2://localhost:8080/%$1 [P,L]

ProxyPass "/" "https://127.0.0.1:8080/"
ProxyPassReverse "/" "https://127.0.0.1:8080/"

ErrorLog ${APACHE LOG DIR}/error.log
CustomLog ${APACHE LOG DIR}/access.log combined

SSLCertificateFile /etc/letsencrypt/live/cells.hwdomain.io/fullchain.pem
SSLCertificateKeyFile /etc/letsencrypt/live/cells.hwdomain.io/privkey.pem
#Include /etc/letsencrypt/options-ssl-apache.conf

</VirtualHost>

Save the file and exit the editor when finished.

Now run the command below to activate the virtual host file cells.conf and verify Apache syntax for error. If you have
proper Apache2 syntax, you should get an output Syntax OK.

sudo aZensite cells.conf
. sudo apachectl configtest

Lastly, run the following systemctl command to restart the apache2 service and apply the changes. With this, your
Pydio Cells should be accessible via a secure HT'TPS connection of Apache2 reverse proxy.

sudo systemctl restart apache2

Accessing Pydio Cells Installation

Launch your web browser and visit the domain name of the Pydio Cells installation, such as https://cells.hwdomain.io/.
If everything goes well, you should be redirected to the Pydio Cells login page.

Input the admin user and password that you've ereated during the configuration process, then click Enter.

Enter login/password

If successful, you should see the Pydio Cells user dashboard like this:

https://cells.hwdomain.io/

Click on the Personal Files workspace and you should get the Pydio Cells file manager. Click the New button and
upload a new file to ensure that you can upload files to Pydio Cells.

& Personal Files ©

—
¥ *

ou - Accessed folder

prsnnt-files

Conclusion

Following this guide, you've installed Pydio Cells on the Debian 12 server. You've installed Pydio Cells with MariaDB

database server and Apache?2 reverse proxy, and on top of that, you've also'secured your Pydio Cells installation with
SSL/TLS certificates generated from Letsencrypt. From here, you can now use Pydio Cells for your document and file
management, collaboration, and sharing.

