
comment installer-pydio-on-debian-12
Pydio	Cells	is	a	self-hosted	Document	Sharing	and	Collaboration	platform.	It	also	gives	you	full	control	of	your	
document-sharing	environment.	The	Pydio	Cells	is	a	fast	performance,	can	handle	huge	file	transfer	sizes,	and	provides	
advanced	workflow	automation.

In	the	following	guide,	I	will	walk	you	through	the	installation	of	Pydio	Cells	as	a	file-sharing	and	collaboration	tool	on	a	
Debian	12	server.	You	will	install	Pydio	Cells	with	the	MariaDB	database	server	and	Apache2	reverse	proxy.	You'll	also	
secure	the	installation	with	SSL/TLS	certificates	that	you	will	generate	via	Certbot	and	Letsencrypt.

Prerequisites
Before	moving	on,	gathers	the	following:

A	Debian	12	server.
A	non-root	user	with	administrator	privileges.
A	domain	name	pointed	to	the	server	IP	address.

Installing	Dependencies
The	Pydio	Cells	is	an	open-source	file	sharing,	management,	and	collaboration.	Before	installing	it,	you	must	install
dependencies	such	as	MariaDB	for	the	database	server	and	Apache2	for	the	reverse	proxy.	You	will	also	install	Certbot
for	generating	SSL/TLS	certificates	to	secure	your	installation.

First,	refresh	your	Debian	package	index	using	the	following	apt	update	command.

sudo	apt	update

Now	install	dependencies	via	the	apt	install	command	below.	You	will	install	the	MariaDB	server	that	will	be	used	as
the	database	for	Pydio	Cells,	the	Apache2	web	server	as	a	reverse	proxy,	and	Certbot	for	generating	SSL/TLS
certificates	from	Letsencrypt.

sudo	apt	install	mariadb-server	apache2	certbot	wget

Type	y	to	confirm	the	installation	and	press	ENTER.

Once	dependencies	are	installed,	verify	the	apache2	service	using	the	following	systemctl	command.	Ensure	that	the
apache2	service	is	enabled	and	running.

sudo	systemctl	is-enabled	apache2
sudo	systemctl	status	apache2

The	following	output	indicates	that	apache2	is	enabled	and	running.

Lastly,	verify	the	mariadb	service	via	the	following	systemctl	command.

sudo	systemctl	is-enabled	mariadb
sudo	systemctl	status	mariadb

The	output	should	be	similar,	which	indicates	the	mariadb	service	is	running	and	enabled.

Configuring	MariaDB	Server
In	the	following	step,	you	will	be	securing	your	MariaDB	server	installation	via	the	mariadb-secure-installation	utility.
Then,	you	will	create	a	new	database	and	user	for	Pydio	Cells.

Execute	the	mariadb-secure-installation	command	below	to	start	configuring	the	MariaDB	server.

sudo	mariadb-secure-installation

The	setup	process	will	require	you	to	input	Y	to	confirm	the	new	settings	or	n	for	no.	Below	are	some	of	the	MariaDB
server	configurations	you	will	be	asked	for:

Switch	local	authentication	to	unix_socket?	Input	n.
Set	up	the	new	MariaDB	root	password?	Input	y	to	confirm,	then	type	the	new	password	for	your	MariaDB	server
deployment.
Remove	anonymous	user?	Input	y	to	confirm.
Remove	the	default	database	test	from	the	deployment?.	Input	y	to	confirm.
Disallow	MariaDB	root	login	from	remote	connections?	Input	y	to	confirm.
Reload	table	privileges	and	apply	the	changes?	Input	y	and	press	ENTER.

After	the	MariaDB	is	secured,	you	will	create	a	new	database	and	user	for	the	Pydio	Cells	installation.	To	do	that,	you
must	log	in	to	the	MariaDB	server.

Execute	the	following	mariadb	command	to	log	in	to	the	MariaDB	server.	Input	your	MariaDB	root	password	when
prompted.

sudo	mariadb	-u	root	-p

Once	logged	in,	run	the	following	queries	to	create	a	new	database	cells,	a	user	pydio	with	the	password	p4ssw0rd.

Then,	allow	user	pydio	to	access	the	database	cells.

CREATE	DATABASE	cells;
CREATE	USER	'pydio'@'localhost'	IDENTIFIED	BY	'p4ssw0rd';
GRANT	ALL	PRIVILEGES	ON	cells.*	to	'pydio'@'localhost';
FLUSH	PRIVILEGES;

Next,	run	the	following	query	to	ensure	the	user	pydio	can	access	the	database	cells.

SHOW	GRANTS	FOR	'pydio'@'localhost';

The	following	output	shows	you	the	user	pydio	has	privileges	to	access	and	manage	the	database	cells.

Type	quit	to	exit	from	the	MariaDB	server.

Installing	Pydio	Cells
After	configuring	the	MariaDB	server,	you	will	install	the	Pydio	Cells	via	static	binary	file.	And	before	that,	you	must
prepare	your	system	by	creating	a	new	dedicated	user,	setting	up	a	data	directory,	and	creating	some	system
environment	variables	that	are	needed	by	Pydio	Cells.

Setting	Up	User	and	Environment	Variables

First,	create	a	new	user	pydio	using	the	following	command.

sudo	useradd	-m	-s	/bin/bash	pydio

Now	create	a	new	data	directory	/var/cells	for	your	Pydio	Cells	installation	and	change	the	ownership	to	the	user	pydio.

sudo	mkdir	-p	/opt/pydio/bin	/var/cells
sudo	chown	-R	pydio:	/opt/pydio	/var/cells

Next,	run	the	following	command	to	create	new	environment	variables	configuration	/etc/profile.d/cells-env.sh	and
change	the	permission	to	0755	to	make	it	executable.	The	environment	variable	CELLS_WORKING_DIR	for	the	data
directory,	CELLS_BIND	to	determine	which	IP	address	and	port	Pydio	Cells	will	be	running,	and	the
CELLS_EXTERNAL	is	the	domain	name	of	your	Pydio	Cells	installation.

sudo	tee	-a	/etc/profile.d/cells-env.sh	<<	EOF
export	CELLS_WORKING_DIR=/var/cells
export	CELLS_BIND=https://127.0.0.1:8080
export	CELLS_EXTERNAL=https://cells.hwdomain.io
EOF
sudo	chmod	0755	/etc/profile.d/cells-env.sh

Now	log	in	as	the	user	pydio	and	verify	environment	variables	CELLS_WORKING_DIR,	CELLS_BIND,	and
CELLS_EXTERNAL.

su	-	pydio

echo	$CELLS_WORKING_DIR
echo	$CELLS_BIND
echo	$CELLS_EXTERNAL

If	successful,	you	should	see	each	environment	variable	will	be	matched	with	the	file	/etc/profile.d/cells-env.sh.

Downloading	and	Installing	Pydio	Cells

Execute	the	following	command	to	download	the	binary	static	file	of	Pydio	Cells	to	/opt/pydio/bin/cells.

export	distribId=cells
wget	-O	/opt/pydio/bin/cells	https://download.pydio.com/latest/${distribId}/release/{latest}/linux-amd64/${distribId}

Once	the	Pydio	Cells	are	downloaded,	make	it	executable	using	the	following	command.	Then,	type	exit	to	log	out	from
user	pydio.

chmod	a+x	/opt/pydio/bin/cells
exit

Now	run	the	following	command	to	allow	cells	to	bind	in	the	privileged	ports.	Then,	create	a	symlink	for	the
/opt/pydio/bin/cells	command	to	/usr/local/bin/cells.

sudo	setcap	'cap_net_bind_service=+ep'	/opt/pydio/bin/cells
sudo	ln	-s	/opt/pydio/bin/cells	/usr/local/bin/cells

Now	log	in	again	as	a	pydio	user	and	check	the	binary	file	of	cells.	Then,	verify	your	current	cells	version.

su	-	pydio

which	cells
cells	version

You	should	see	the	cells	binary	file	is	located	at	/usr/local/bin/cells	and	the	cells	version	that	was	installed	is	4.2.5.

Configuring	Pydio	Cells
With	the	Pydio	Cells	binary	file	installed,	you	will	start	configuring	it,	which	can	be	done	via	CLI	(command-line
interface)	or	web	browser.	As	for	this	case,	you	will	configure	Pydio	Cells	from	the	command-line	terminal,	you	will	set
up	the	database,	create	the	admin	user,	then	will	create	a	new	systemd	service	file	to	run	Pydia	Cells	in	the
background.

Run	the	cells	command	below	to	start	configuring	the	Pydio	Cells	installation.	The	parameter	--cli	allow	you	to	configure
Pydio	Cells	from	your	terminal	with	an	interactive	environment.

cells	configure	--cli

Below	some	configurations	that	you	will	be	asked	for:

For	the	database	configuration,	select	via	TCP	and	input	the	database	host	as	localhost,	port	with	default	3306,
database	name	cells,	the	user	pydio,	and	the	password.
Input	n	when	prompted	about	the	MongoDB	configuration	for	high-availability	Cells	installation.
Input	the	new	admin	user	and	password	for	your	Pydio	Cells	installation.
For	the	storage	configuration,	select	the	option	/var/cells/data.

When	the	configuration	process	is	finished,	you	should	get	an	output	Installation	Finished	like	the	following:

Now	that	you've	configured	Pydio	Cells,	the	next	step	you	will	set	up	cells	to	run	in	the	background	as	a	systemd

service.	This	makes	you	easier	to	manage	cells	via	the	systemctl	command	utility.

Use	the	following	nano	editor	command	to	create	a	new	systemd	service	file	/etc/systemd/system/cells.service.

sudo	nano	/etc/systemd/system/cells.service

Insert	the	following	configuration	and	be	sure	to	change	some	environment	variables	CELLS_WORKING_DIR,
CELLS_BIND,	and	CELLS_EXTERNAL	within	the	below	configuration.

[Unit]
Description=Pydio	Cells
Documentation=https://pydio.com
Wants=network-online.target
After=network-online.target
AssertFileIsExecutable=/opt/pydio/bin/cells

[Service]
User=pydio
Group=pydio
PermissionsStartOnly=true
AmbientCapabilities=CAP_NET_BIND_SERVICE
ExecStart=/opt/pydio/bin/cells	start
Restart=on-failure
StandardOutput=journal
StandardError=inherit
LimitNOFILE=65536
TimeoutStopSec=5
KillSignal=INT
SendSIGKILL=yes
SuccessExitStatus=0
WorkingDirectory=/home/pydio

#	Add	environment	variables
Environment=CELLS_WORKING_DIR=/var/cells
Environment=CELLS_BIND=https://127.0.0.1:8080
Environment=CELLS_EXTERNAL=https://cells.hwdomain.io

[Install]
WantedBy=multi-user.target

When	finished,	save	the	file	and	exit	the	editor.

Now	run	the	following	systemctl	command	to	reload	the	systemd	manager	and	apply	the	new	systemd	service.

sudo	systemctl	daemon-reload

Start	and	enable	the	cells	service	using	the	systemctl	command	below.	This	command	will	add	the	cells	service	to	start
automatically	at	system	boot.

sudo	systemctl	start	cells
sudo	systemctl	enable	cells

Verify	the	cells	service	status	using	the	command	below.	The	Pydio	Cells	should	be	running	on	127.0.0.1	with	port
8080,	as	defined	within	the	CELLS_BIND	environment	variable.

sudo	systemctl	status	cells

If	running,	you	should	get	an	output	such	as	active	(running).

Configuring	Apache2	as	a	Reverse	Proxy
At	this	point,	the	Pydio	Cells	are	up	and	running	in	the	background	on	localhost	with	default	port	xxx.	And	this	step,	you
will	be	configuring	Apache2	as	a	reverse	proxy	for	your	Pydio	Cells	application.	Also,	you	will	generate	new	SSL/TLS
certificates	for	your	domain	name,	so	be	sure	that	you've	prepared	the	domain	name	and	pointed	to	the	server	IP
address.

First,	execute	the	a2enmod	command	below	to	enable	some	Apache2	extensions	that	will	be	used	as	a	reverse	proxy.

sudo	a2enmod	rewrite	proxy	proxy_http	proxy_wstunnel	http2	proxy_http2

Then	run	the	following	command	to	create	a	new	directory	/var/www/html/cells/public_html	and	change	the	ownership
to	www-data	user.	This	directory	will	be	used	for	the	verification	when	generating	Letsencrypt	certificates.

sudo	mkdir	-p	/var/www/html/cells/public_html
sudo	chown	-R	www-data:www-data	/var/www/html/cells/public_html

After	that,	run	the	certbot	command	below	to	generate	new	SSL/TLS	certificates	for	your	Pydio	Cells	domain	name.	Be
sure	to	change	the	email	address	and	the	domain	name	with	your	information.

sudo	certbot	certonly	--agree-tos	--email	user@email.com	--no-eff-email	--webroot	-w	/var/www/html/cells/public_html	-
d	cells.hwdomain.io

When	the	process	is	complete,	your	SSL/TLS	certificates	will	be	available	at	the	/etc/letsencrypt/live/domain.com
directory.

Next,	create	a	new	Apache2	virtual	host	configuration	/etc/apache2/sites-available/cells.conf	using	the	following	nano
editor	command.

sudo	nano	/etc/apache2/sites-available/cells.conf

Insert	the	following	configuration	and	be	sure	to	change	the	domain	name	and	the	path	of	SSL/TLS	certificates	with
your	information.

<VirtualHost	*:80>
				ServerName	cells.hwdomain.io

				RewriteEngine	On
				RewriteCond	%{HTTPS}	off
				RewriteRule	(.*)	https://%{HTTP_HOST}%{REQUEST_URI}

				RewriteCond	%{SERVER_NAME}	=cells.hwdomain.io
				RewriteRule	^	https://%{SERVER_NAME}%{REQUEST_URI}	[END,NE,R=permanent]
</VirtualHost>

<VirtualHost	*:443>
				ServerName	cells.hwdomain.io
				AllowEncodedSlashes	On
				RewriteEngine	On

				#	be	aware	of	this
				#	Allow	reverse	proxy	via	self-signed	certificates
				SSLProxyEngine	On
				SSLProxyVerify	none	
				SSLProxyCheckPeerCN	off
				SSLProxyCheckPeerName	off
				SSLProxyCheckPeerExpire	off

				##	The	order	of	the	directives	matters.
				#	If	Cells	is	not	running	with	https,	consider	using	ws	instead	of	wss
				ProxyPassMatch	"/ws/(.*)"	wss://localhost:8080/ws/$1	nocanon

				##	This	rewrite	condition	is	required	if	using	Cells-Sync
				#	RewriteCond	%{HTTP:Content-Type}	=application/grpc	[NC]
				#	RewriteRule	/(.*)	h2://localhost:8080/$1	[P,L]

				ProxyPass	"/"	"https://127.0.0.1:8080/"	
				ProxyPassReverse	"/"	"https://127.0.0.1:8080/"

				ErrorLog	${APACHE_LOG_DIR}/error.log
				CustomLog	${APACHE_LOG_DIR}/access.log	combined

				SSLCertificateFile	/etc/letsencrypt/live/cells.hwdomain.io/fullchain.pem
				SSLCertificateKeyFile	/etc/letsencrypt/live/cells.hwdomain.io/privkey.pem
				#Include	/etc/letsencrypt/options-ssl-apache.conf
</VirtualHost>

Save	the	file	and	exit	the	editor	when	finished.

Now	run	the	command	below	to	activate	the	virtual	host	file	cells.conf	and	verify	Apache	syntax	for	error.	If	you	have
proper	Apache2	syntax,	you	should	get	an	output	Syntax	OK.

sudo	a2ensite	cells.conf
sudo	apachectl	configtest

Lastly,	run	the	following	systemctl	command	to	restart	the	apache2	service	and	apply	the	changes.	With	this,	your
Pydio	Cells	should	be	accessible	via	a	secure	HTTPS	connection	of	Apache2	reverse	proxy.

sudo	systemctl	restart	apache2

Accessing	Pydio	Cells	Installation
Launch	your	web	browser	and	visit	the	domain	name	of	the	Pydio	Cells	installation,	such	as	https://cells.hwdomain.io/.
If	everything	goes	well,	you	should	be	redirected	to	the	Pydio	Cells	login	page.

Input	the	admin	user	and	password	that	you've	created	during	the	configuration	process,	then	click	Enter.

If	successful,	you	should	see	the	Pydio	Cells	user	dashboard	like	this:

https://cells.hwdomain.io/

Click	on	the	Personal	Files	workspace	and	you	should	get	the	Pydio	Cells	file	manager.	Click	the	New	button	and
upload	a	new	file	to	ensure	that	you	can	upload	files	to	Pydio	Cells.

Conclusion
Following	this	guide,	you've	installed	Pydio	Cells	on	the	Debian	12	server.	You've	installed	Pydio	Cells	with	MariaDB
database	server	and	Apache2	reverse	proxy,	and	on	top	of	that,	you've	also	secured	your	Pydio	Cells	installation	with
SSL/TLS	certificates	generated	from	Letsencrypt.	From	here,	you	can	now	use	Pydio	Cells	for	your	document	and	file
management,	collaboration,	and	sharing.

